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Multiple Phases and Return to Equilibrium 
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This paper considers the problem of return to equilibrium for perturbations of 
the dynamics of the one-sided and two-sided XY-models with external field. We 
find that, in the presence of multiple ground states, return to equilibrium fails 
for certain perturbations while still holding wen there is a unique ground state. 
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1. M A I N  RESULTS 

The problem of return to equilibrium in the XY-model has received con- 
siderable attention recently.(1-3' 5,6,1o) The interesting feature of this model is 
that it exhibits irreversible behavior which may be analyzed explicitly. 
Araki and Matsui (4) have also studied the ground states of the XY-chain in 
an external field and determined the detailed behavior of the set of ground 
states as a function of the anisotropy and field strength. Of greatest interest 
is the t~ansition from the regime with two ground states to that with a 
unique ground state. In comparing the results of ref. 4 with those of ref. 10, 
it seemed likely that the presence of two ground states rather than one 
could be detected by irreversible behavior under perturbations of the 
dynamics. The present study confirms that this is indeed the case. 

To describe in more detail how this occurs, consider the XY- 

Hamiltonian for a one-dimensional spin chain of length 2 N +  1 with 
Hamiltonian 

H u = - -  [(1 q- V] o'(J)o "(j+ 1) _]_ (1 - -  v]  a(J)cr <g+ 1)] + 42  Z a~ ) 
4 (j= N . . . . . . . .  y y j = - - N  

(1.1) 
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Here the o-(j ), where ~ = x, y, z, are the Pauli spin matrices at each site 
j~2L The parameter 2 is the field strength and y is the anisotropy 
parameter. Both these parameters are real numbers. Let d s denote the 
algebra generated by the Pauli matrices at each site. It is, for the infinite 
chain, the C*-algebra consisting of the infinite tensor product of the 2 • 2 
matrices. The time evolution of an observable A ~ d s defined by (8) 

~,(A)= lim ei'HUAe -i'I~u (1.2) 
N ~ c o  

Our main results concern the return to equilibrium or its failure, as a 
function of the parameters in the Hamiltonian, after perturbing this 
dynamics. We consider perturbed one-parameter groups {z~} where the 
perturbation is obtained by adding to each HN a fixed element of d s of the 
type described as local and quadratic in ref. 10; a precise definition is also 
given below. As an indication of the results, we show, for example, that 
there exist perturbations P of the dynamics such that return to equilibrium 
fails to occur for 121 < 1/2 but does occur for all other values of 2. In our 
notation 121 = 1/2 is the critical field strength above and at which there is 
one ground state and below which there are two. Thus, the presence or 
absence of multiple ground states may be detected by the nonequilibrium 
behavior of the model. As the behavior of the XY-model near this critical 
field strength is typical of critical behavior for a wide range of models (the 
two-dimensional Ising model being one), we anticipate that a similar 
phenomenon occurs for them as well. 

The first step in the analysis of this problem is to introduce the 
Jordan-Wigner transformation following Araki. (5) First enlarge d s by 
adjoining a new element T having the properties 

T 2 = l ,  T * = T ,  TAT=O (A) for A ~ r  s (1.3) 

where 0 is the automorphism of ~r given by 

0_ (A)=  lira ~s) A ~r~ jl (1.4) 
N ~ o o  

Within this enlarged algebra, denoted by s), we introduce annihilation and 
creation operators by 

C~ ~-  T S j ( ( ~ ( x J )  -~ - "l(Ty (j))/2, cs= TSj(a(x j) - kr (yJ))/2 (1.5) 

where 
(j--l) if j >  1 s j  = - - -  

S s = l  if j = l  

Sj=a(~ j) if j < 0  
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The following relations then hold: 

[cj, ek]+=[c*,c*]+=O, [c).,e*]+=6jkl (1.6) 

Thus ~ also contains the CAR algebra, denoted by sr 'caR, generated by 
these annihilation and creation operators. There is an automorphism of s~ 
specified by sending ~(J) to ~(J) ~(J) to -~(J) (and fixing (J) a z ). Elements tl x - - o  x ~ O y  O y  

of the algebra are called odd or even, depending on whether they lie in the 
- 1 or + 1 eigenspace of this automorphism. The intersection of the spin 
and CAR algebras contains all the even elements of ~r and sg s. In 
particular, it contains the local Hamiltonians described above, for, as an 
element of ~ ,  

HN=2 j N 1 "Jr- j + I C j )  1 

N 

+ )~ Z (2c*cj- 1) (1.7) 
j =  N 

From this it was shown in ref. 5 (also see refs. 8 and 10) that there exists 
an automorphism group of the enlarged algebra sJ which extends {rt} and 
furthermore restricts to the CAR algebra as an automorphism group of 
d cAR. We will use the same notation for all three. Indeed, the intersection 
of the CAR and spin algebras remains invariant under the automorphism 
groups. As in refs. 6 and 10, it follows for each //E R that there exists a 
unique (z,/~)-KMS state on d s and a unique (~,/?)-KMS state on ~CAR 
and that they have the properties that these states agree on the intersection 
of  the two algebras and are identically zero on the odd elements. 

Finally, the action of the automorphism group is represented in 
its simplest form by regarding s~ 'cAR as a complex Clifford algebra (or 
self-dual CAR algebra in Araki's (7) terminology). Thus, letting 12(7/) be 
the usual sequence space, we introduce c * ( f ) = Z j ~ c * f j  and c ( f ) =  
Y~j~zcjfj, where / = ( f j ) E / 2 ( Z ) .  Then we define B(h)=c*(f)+c(g),  
where h =  (fg). The complex Clifford algebra is generated by {B(h): hE 
12 | 12(2) }, which satisfy 

I-8(hl)*, 8 (h2) ]  + = (hi ,  h2)1, B(h)* = ~ ( r h )  (1.8) 

where 
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and (hi, h2)= (f l ,  f2) + (gi,  g2) for 

hk=( fkogk for k = l , 2  

and (fl,f2)=Y~j~2~fl,jf2,j. Now the dynamics is seen to act in a 
particularly simple way on these operators as 

r,(B(h)) = B(em'h) (1.9) 

with 

K [22+(U+U*)/2 y(U-U*)/2 
= ~, - 7 ( U -  U*)/2 - 2 2  - ( U +  U*)/2 / 

(1.10) 

where U is the left shift operator on/2(77); i.e., (Uf) j=  fj+ 1, (U ' f ) j - -  f j  1. 
We now consider perturbations of the XY-dynamics which also act 

on the CAR-algebra in the manner described for the unperturbed XY- 
Hamiltonian in (1.12). Such perturbations are the means by which we 
depart from the given equilibrium state (the unique KMS state for the 
group ~,) and which leads us to investigate the question of return to 
equilibrium. 

A first characteristic we require of such a perturbation is that it is 
implemented by some fixed self-adjoint element P of d s. The perturbed 
automorphism group {z P} is obtained by adding P to the H u of (1.1) and 
taking a limit as in (1.2). (8'~~ A second requirement is that the self-adjoint 
operator is quadratic. This is to mean that P=P* ~ d s n d  cAR and 
EP, B(h)] = B(Vh) for h ~ 12 �9  where V is some bounded self-adjoint 
operator on 12012(~). The first result of these various restrictions is that 
the automorphism group z P extends to the larger algebra ~ and restricts 
as a .-automorphism group of d cAR. Further, for each fl ~ ~ there is a 
unique (rP, fl)-KMS state on each of the algebras discussed above which 
agrees on the intersections and is identically zero on the odd elements. 
Furthermore, the action of the perturbed automorphism group is also 
simply described by 

zP(B(h)) = B(e "K+ v),) (1.11) 

If there is a finite interval I c Y  such that Vh(n)=O for n6I  and h e  
120312(Y-), then P is said to be local and quadratic (in the CAR elements) 
and the corresponding V a local perturbation. This operator V is then finite 
rank. The smallest interval I in the above is denoted by supp V. The third 
requirement of the perturbation is that P is local. 
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In terms of elements of d s, the local quadratic perturbations include 
finite linear (but not quadratic) combinations of the o~ j). Also included are 
those combinations of Pauli matrices translating to self-adjoint quadratic 
expressions in the annihilation and creation operators, though the presen- 
tation need not be so simple in Pauli operators. Henceforth by a perturba- 
tion V we will mean one arising from the requirements of the preceding 
paragraph on P. Of special interest is the "decoupling" perturbation given 
b y  

� 8 8  0 1 0 1 Ox~r x + (1 - y )  oyoy~] (1.12) 

The main result on which all else hinges concerns the spectrum of such 
perturbations. 

T h e o r e m  1.1. Let V denote a self-adjoint local operator. Then the 
singular continuous spectrum of K +  V is empty. The spectrum of K +  V 
consists of a finite number of eigenvalues and, if 7 2 r 1 or 2 r 0, one or two 
closed intervals of N which are the absolutely continuous spectrum of 
K +  V. The absolutely continuous spectrum is empty in the exceptional 
c a s e .  

The general framework for discussing return to equilibrium involves 
the comparison of the two one-parameter groups of automorphisms of the 
CAR algebra v and rP given by (1.9) and (1.11). The norm limits 7-+(A)= 
lim,~ -+~ rP_,vt(A) exist for all elements A of the CAR algebra and are 
quasifree .-morphisms in the sense that there exist bounded operators O-+ 
on 12 �9 with 7 + (B(h) ) = B(O +_ (h)), where 

O+(h )=  lim e-it(x+V)ei'Kh 
, ~  -t-oo 

The range of O+ is the subspace corresponding to the absolutely con- 
tinuous part of the spectrum of K +  V. Moreover, 7+ rt = ~ 7 +  for all t e N. 
The inverses O_TI exist on the range of O+ and define *-morphisms 7-+t on 
the subalgebra of the CAR algebra generated by the B(h) with h in the 
range of O +. 

Returning to the Paulion algebra d s, we again use the same notations 
and vv to denote the related automorphisms of d ;  both automorphisms 

may be regarded as restrictions of the same on a common larger algebra 
as explained above. Also these groups have a unique KMS state on d s for 
each/~ >/0, and we now denote these by c% and coy, respectively. The first 
fact we deduce is a direct consequence of Theorem 1.1. 
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Theorem 1.2. Provided 2 ~ 0  or ~2=~ 1, return to equilibrium will 
occur under the unperturbed dynamics on the two-sided model; that is, for 
all A in s~cs: 

lim e)~(z,(A)) = coB(A) 
t ~  + o o  

This is proved in the same way as the corresponding result in ref. 10, 
which is the result for the case 2 = 0. If we consider evolution under the 
perturbed dynamics, we may again use identical proofs to those in ref. 10 
to obtain the following. 

T h e o r e m  1.3. Return to equilibrium will occur under the per- 
turbed dynamics, i.e., for all A in sJ s, 

lim co~(r~(A))=o)~(A) 
t ~  + o o  

if and only if the spectrum of K +  V is purely absolutely continuous. 
Otherwise we have 

lim - co~(T~(B(h)* B(h')) 
t ~  +_oo t 

= ,o (BIh)* B ( h ' ) )  + - B ( P A ' ) )  
J 

where the summation is over the finite number of distinct eigenspaces of 
K +  V with eigenprojections Pj. 

Of course the same is true for the one-sided model  which is obtained 
by replacing K by K+,  where K+ has the same form as K with the 
one-sided shift o n  12(7/) replacing the two-sided shift everywhere it occurs 
in (1.11 ). This leads to our main result. 

T h e o r e m  1.4. There exists a finite-rank perturbation P of the 
XY-Hamiltonian with field for which return to equilibrium occurs under 
the perturbed dynamics when [2[/> 1/2 or ~ = 0  but fails when ]fll < 1 / 2  
and 7 r 0. 

Proof. Using Propositions 5.2 and 4.1, we see that e = 0 is an eigen- 
value of K +  V for the local self-adjoint perturbation V= Vo of Eq. (5.7) 
when 2 < 1/2 and 7 ~ 0. When fl > 1/2 or 7 = 0 the spectrum of K+ + VD is 
purely absolutely continuous. This is because the spectrum of K-t? V D is the 
same as that of K+ with the same values of 2 and 7- Observe that when P 
is given by (1.12) one has [P, B(h)] = B(VDh) for h e 12 �9 12(Z). The result 
then follows from Theorem 1.3. | 
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Remark. In other words, return to equilibrium fails to occur under 
the perturbed dynamics precisely when there is more than one ground 
state. 

After preliminary facts are established in Section 2, Theorem 1.1 is 
proved in Sections3-5 (discrete spectrum) and Section6 (absence of 
singular continuous spectrum). As explained above, Theorems 1.2 1.4 then 
follow as corollaries. 

2. P R E L I M I N A R I E S  

We begin with the spectral analysis of K. Introduce the Fourier 
transform: riO) = S j ~  ~J% for f =  (fj) e/2(E). Then K acts on the Fourier- 
transformed space by (Kh)(O)= K(O)h(O), where 

/ 2 2 +  cos 0 - i 7  sin 0 ) (2.1) 
K(0) = ~ i? sin 0 - 2 2 -  cos 0/  

From this it is clear that if 2 ~ 0 or 7 ~ 1 the spectrum of K is absolutely 
continuous and is the union of two closed intervals, one in [R+w {0} and 
one in IR w {0}, forming a symmetric subset of 0~. When 4 = 0  and 72= 1 
the spectrum of K is the set { - 1, 1 } and is thus pure point spectrum. 

These intervals depend on the parameters 4, 7. Let 

I 
( l l  - 2  121 I, 1 + 2  I~1 I) 

if 72=1 

( 1 1 - 2  12l I, I1 + 2  121 l) 
if 72 r 1 and [22/(y 2 -  1)[ > 1 

1(2, 7)= ~(a, 11-2 t211)v(11-2 1211, ! i+2  1211) 
/ if 72 < 1 and [22/(y 2 -  1)[ ~< 1 

[ ( l i - 2  121[, 11+2 1211)u(ll+2 1211, a) 
if 72> t and [22/(y 2 -  1)[ ~< 1 

(2.2) 

and 

{{z ~ C: z2 = (1 - 22)2, (1 + 22)2, a} when 7251 (2.3) 
E= {z~(~:z2 (1_22)2 , (1+22)2} when 72=1 

where a denotes the positive square root of [(422--~ .~2__ 1)/(])2 1)] 72. 
With this notation the spectrum of K is given by the closure of -1(2,  7)w 
1(2, 7), unless 2 = 0 and 72 = 1, when it is given by the set E = { - 1, 1 }. In 
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all cases some but  not  necessarily all points of E are included and possibly 
0 as well. The  points  of  E are never included in the intervals compris ing 
- I ( 2 ,  7) w I(2, 7). 

Much  of the subsequent  analysis of the spectrum of the per turbed 
Hami l ton ian  will depend on the propert ies  of po lynomia l  equat ions arising 
f rom d e t ( K ( z ) - e l ) = O ;  i.e., the de terminant  of the matr ix  in (2.1) after 
subst i tut ing z = e i~ When  72 :/: 1 one has 

7 2 - - 1  
d e t ( K ( z ) -  e l )  - ~  Q(z) 

where 

4e 2 -  1 6 2 2 -  2 ( 1 + ~ 2 )  z 2 82 
__ 8._.....~ Z3 ~- 72 -- 72 __ Z + 1 (2.4) Q(Z) = Z 4 7 2 -  1 1 1 

and when 72=  1 and 2 4= 0 one has d e t ( K ( z ) -  e l ) = - ( - 2 2 / z ) Q ( z ) ,  where 

1 + 422 - e 2 
Q ( z ) - -  z2 + 22 z +  1 (2.5) 

It  is wor th  isolating here a number  of features of these polynomials  for 
later reference. The  roots  of the quadrat ic  are given by rl. 2 = [ l +  tl/2]/42, 
where l = e 2 - 1 - 422 and t = 1 - 822 + 1624 - 2e 2 - 822e 2 -+- e a. The roots  

of the quart ic  are given by 

rj, 2 = [22 + m 1/2 "}- (422 + 42m 1/2 + n)1/2]/(72 - 1 ) (2.6) 

r3, 4 = [22 -- m 1/2 -}- (422 -- 42m 1/2 -t- n)1/2]/(72 -- 1 ) (2.7) 

where m = 4 7 2 2 2 + 7 4 + e  2 - 7 2 - 7 2 e  2 and n = 4 7 2 2 2 + 7 2 + e  2 - 1 - 7 2 e  2. In 

all cases the roots  satisfy the relations r l r2 = 1 = r 3 r 4. They  are fur thermore  
distinct unless e eE,  whereupon  repeated roots  occur. N o  root  has 
magni tude  one unless e lies in the closure of - I ( 2 , 7 ) w I ( 2 , 7 ) ,  the 
spect rum of K, whereupon  at least one has such magnitude.  N o  root  is 
ever zero. 

We now study opera tors  of the form K +  V o n  I2(77 ) (~)12(77), where V 
is a self-adjoint local operator .  Such opera tors  may  have highly nontrivial  
point  spectrum. To  analyze this we consider the equat ion 

which is equivalent  to 

( ~ )  ( e + 2 2 + c o s O  - i ~ / s i n 0  ) ( ~ )  
d e t ( K ( O ) - e l )  = \  i7 sin 0 e - 2 2 - c o s  0 V (2.8) 
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Now let IN, M]  be an interval containing supp V. Then we have 

V ( f ) ( n ) = ( 0 0 )  if nr  (2.9) 

and hence if n r I N -  1, M + 1 ] 

- 7 ( U -  U*)/2 e - 2 2 - ( U +  U*)/ZJ 

The implications of these relations can be understood most simply by 
separating out the case 72= 1. The general case has the same broad proper- 
ties as this special case but is considerably more complex. Our strategy of 
exposition is then to describe the special case in detail and to indicate the 
changes necessary when this constraint is dropped. 

Thus we have for 72 = 1 from (2.10) that the coefficients fn, gn satisfy 
the difference equation, when n r I N -  1, M +  1], given by 

- 22p(n + 1 ) + (e 2 - 1 - 422) p(n) - 22p(n - 1 ) = 0 

These equations may be solved in terms of arbitrary initial conditions to 
give for m >/- 1 

f (M+m)=alrm+a3 sm, g(M+m)=blr'~+b3 sm (2.11) 

and 

f(N-m)=a'lrm+a'3s m, g(N-m)=b'lrm+b'3s m (2.i2) 

where r, s are the distinct roots of 

Q(z)=zz + ( l  +42Z-e2~ 
22 ] z + l = O  

In the case where this polynomial has a repeated root z =  r, i.e., when 
e 2 = (1 + 2 121 )2 or e 2 = (1 - 2 12[) 2, then the solutions are 

and 

f (M+m)=(a l  +ma2)r m, g(M+m)=(bl  +mb3)r m (2.13) 

f (N-m)=(a' l+ma'3)r m, g(N-m)=(b' l  +mb'3)r m (2.14) 

The constants ai, a), bj, b) for j =  1, 2 remain to be determined. The 
condition that the eigenfunction be in the space /2(2~)@/2(~) naturally 
constrains these constants and the constraint depends on the values of the 
roots. We list them in each case: 
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(a) r#s,  Ir l =1. It follows that Isl = l / I r l  = 1. Then all constants 
must be zero to get a normalizable eigenfunction so the eigenfunction has 
support in [ N - 1 ,  M + I ] .  Note that in this case the equation 
d e t ( K ( 0 ) - e l )  = 0 has a solution for 0 real, and so e lies in the spectrum 
of K. 

(b) r r s, I rl # 1. It follows that neither root has magnitude one and 
from (1.20) that precisely one has magnitude less than one. Let r denote the 
smaller root. Then normalizability forces the constants a3, b3, a~, b~ to be 
zero. Observe further that in this case d e t ( K ( 0 ) - e l )  has no zeros for 0 
real; otherwise the polynomial Q(z) would have a root z = e ;~ of modulus 
one, contrary to our assumption. So e cannot lie in the spectrum of K. 

(c) r=s. It follows that r=s= -t-1. In this case all constants have to 
be zero to get a normalizable solution and so the support of the eigenfunc- 
tion lies in I N -  1, M +  1] and, as in case la, the eigenvalue e must lie in 
the spectrum of K. 

3. THE POINT  S P E C T R U M - - D I S S E C T I O N  A N D  THE CASE 
y 2 = 1  

The spectral problem of Section 2 may be analyzed further into a 
problem for a one-sided chain. To see why this is the case, we introduce the 
projections PL, Pc, and PR onto elements of 12~/2(Z) with support in the 
intervals ( - 0 %  N -  1], IN, M],  and [ M +  1, oo) respectively. Then the 
eigenvalue equation 

is equivalent to three other equations. Let 

( 1/2 y/2 "] F = ( 1 / 2  -y /2 ' ]  
r + = \ _ ? / 2  - 1 / 2 ) '  - \~,/2 - 1 / 2 )  

The first of these equations is 

(K--el)PL (n)= g, (n) (3.2) 

where the vector on the right-hand side has its support limited to 
{N-  1, N} with 

f ' ( U i  1) ( f (N) )  ( f ' (U))  ( f ( U - -  1) 
g ' (N-1 ) )=  - F +  F 1)) \g(N)) '  \g'(N)) = \ g ( N -  
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The second equation is 

(K-el)PR (n) = \ g , , j  (n) (3.3) 

where the vector on the right hand side has its support limited to 
{ M, M + 1 }, with 

f"(M) ~ ( f (M+ 1)~ 
(g"(M))=S+\g(M+l)]  ' g"(m + 1 \g(M)] 

The third equation is 

(K+ V - e l ) P  c (n)=\g,,,j (n) (3.4) 

where the vector on the right-hand side has its support limited to { N -  1, 
N, M, M + 1 } with 

f " ' ( N -  1)) = r+ (f(N)) 
g"(N-- 1) \g(N))' 

(i(M+ ,) 
g" (M)J = \g(M+ 1)J'  

f"(N)']= -F  ( f (N-1))  
g"(N)) - \ g(N- 1 )) 

f " (M + l)) ( f(M)) 
g"'(M+ 1) = F _  \g(M)} 

Equations (3.2) and (3.3) may be reformulated as "generalized" eigen- 
value problems on the half lattice. To see this, notice that (3.3) implies 

PR(K(2,7)-el)PR.PR(f) 

_-(_r_ (:),---) (3.5) 

where 12 (~/2(7/+) is imbedded in the double-sided sequences by identifying 
Z+ with [ M +  1, oo); 7/+ denotes the nonnegative integers. The operator 
PRKP R restricts to this space and thus can be regarded as acting on the 
one-sided sequences. In fact PRK(2,7)PR=K+(2,7), where K+ is the 
same as K except that we replace U everywhere it appears by the one-sided 
left shift operator U+ on/2(7/+)- That is, (U+f),  = f , + l  for n ~>0 and the 
adjoint U* satisfies ( U ' f ) 0 = 0  and (U* )f,= f ,_l  for n > 0 ,  where f =  
(f,)~12(7/+). A similar set of comments applies to (3.2). If we define S as 
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the reflection map n~-~-n and identify Z+ with [ l - N ,  oo), then we 
obtain 

, . + .  ,, e , , . .~(; )  = S P L ( K ( ) ~ , ? ) - - e l + , P L S . S P L ( f )  

--(-. ,.,~,,.~"~'~ (00), (~ 
Both Eqs. (3.2) and (3.3) thus lead us to solve a problem of the form 

0 0 .- ,~+,~.  e " ( ~ ) ( ;  0 0 :) ,36, 

Knowledge of the solutions of this problem is employed in Section 5 to 
detail the point spectrum of the perturbed two-sided operator K +  V and 
later still the one-sided operator as well. Specifically we aim to show the 
point spectrum is finite. We begin by analyzing Eq. (3.6) and its solutions. 
The results of this are summarized in a proposition at the end of this 
section. 

Now Eq. (3.6) implies, when 72= 1, that 

det,.+ e,,(;)+(~,, 0 
- U ' U )  

/ - 2 2 - e -  (U+ + U*)/2 

k 7(U+ - U* )/2 

(;oo ..:) 
x 0 0 

- 7( U + - U* )/2 
2 2 - e +  (U+ + U*) /2 )  

where 

det(K+ - e l ) =  -22U+ + (e z - 4 2 2 -  1 )1 -22U*  

+ 1 ( 1 - U ' U + )  

When 72 r 1 the same equation results, with 

(3.7) 

(3.8) 

( y ~ _ l )  ( 2 e 2 - 8 2 2 -  (1 +72)) 
det(K+ - e l ) =  U 2 - 2 2 U +  + ~ 1 

- 2 2 U * + ( ~  -~) U * 2 + ( ~  -~) ( 1 - U ' U + )  (3.9) 



Multiple Phases and Return to Equilibrium 799 

Observe in (3.7) that the vector on the right is supported on [0, 1] at most. 
Hence, except possibly when n e {0, 1 }, 

det(K+ - e l ) f ( n ) = O ,  det(K+ - e l )  g(n) = 0 (3.10) 

As can be seen from Eqs. (3.7)-(3.9), each of the f ,  g satisfies a 
difference equation when 7z:~ 1 or 2 :~ 0. This implies each has the form 

o ( r i ) -  1 

P ( n ) = Z  ~ a~nJr7 
r i 0 

where the r i denote the distinct roots of Q(z) given by (1.19) or (1.20), with 
the choice depending on the values of the parameters 2 and 7, and o(ri) is 
the multiplicity of the root. The coefficients ao remain to be determined. 
Since f ,  g are square-summable, we obtain some additional restrictions. It 
will aid the clarity of further exposition to separate out the c a s e  7 2 ~- 1 and 
2 r 0 from the c a s e  7 2 ~ 1. The latter case has the same broad properties as 
the former, but involves considerably more tedious calculation. We also 
deal separately with the case of 2 = 0 and 7 2 = 1, as it is anomalous. 

Thus, when 72= 1 and 2 r  we have from (3.7)-(3.10) a difference 
equation for each set {f(n)}, {g(n)} of the coefficients of the solution for 
n > l :  

- 2 2 p ( n + l ) + ( e 2 - 1 - 4 2 2 ) p ( n ) - 2 2 p ( n - 1 ) = O  (3.11) 

These equations may be solved in terms of arbitrary initial conditions to 
give for m >~ 1 

f ( m ) = a l r m + a 2 s  m, g (m)=blrm+b2s  m (3.12) 

where r, s are the distinct roots of 

1 + 4 2 2 -  e2) 
Q(z) = z 2 + 22 z + 1 

In the case where this polynomial has a repeated root z = r, i.e., when e2= 
(1 + 2  121) 2 or  e 2 =  (1 - - 2  ]J~l) 2, then the solutions are  

f ( m ) = ( a l  +ma2)r m, g (m)=(b l  +mb2)r m (3.13) 

These roots have magnitude one only when e lies in the spectrum of K, 
which in this case is E u  -1(2,  7)wI(2,  7). 

The condition that the solutions be in the space 12(Z+) leads to the 
following constraints, whose nature depends on the values of the roots: 

822/68/5-6-9 
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(a) e e  - I ( 2 , 7 ) v o i ( 2 , 7  ). Then rr but [rsd =1 ,  and one root  has 
modulus one, hence [rt = Is[ = 1. Then  all constants must be zero to get a 
normalizable eigenfunction, so the eigenfunction has support  only at 0. 

(b) eCEw-I (2 ,7)uI (2 ,7) .  Then r#s,  [ r [ ~ l ,  [s[=~l, [ r s [ = l .  It 
follows that  precisely one root,  say r, has modulus < 1. Then nor- 
malizability forces a2 = b2 = 0. 

(c) eEE. It follows that r=s= _1. In this case, then, all constants 
have to be zero to get a normalizable solution and so the support  of the 
eigenfunction is only at 0. 

Now we conclude that the solution (Yg) to (3.6) satisfies: 

(a ')  If e E E u  - - I (2 ,? )voI (2 ,  y), the spectrum of K, (r176 for 

(b')  I f e C E u - I ( 2 ,  y)wI(2,7), then, forsomeal, bleC, 

,n)= (;:) .- for 

where r is the unique root  of modulus < 1 of the polynomial  Q(z). 

Only case (b')  needs detailed consideration. First some straight- 
forward algebra yields 

( a l )  I" y(r + 22 +e) , 
bt = c ~ _ (r + 22 - e)J (3.14) 

with 

k = x - ?y (22 - e) y + (22 + e) yx (3.15) 
42 ' c -  42(22r 4- 422 - e 2) 

Hence we conclude that unless both e = 0  and r = - 2 2 ,  (3.6) has the 
unique solution 

( ; )  ( n ) =  ( a l )  r n b l  for n > 0  

and (3.16) 

(;) , o , = < ) . ,  , - - , , ,  

with 
a l )  = y(22 -- e) + yx(22 + e) ( 7(r + 22 + e) 
bl 42(22r + 422  - -  e 2) \ -- (r + 22 -- e)) (3.17) 
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where r is the unique root  of  magni tude  strictly less than  one of the quad-  
ratic equa t ion  Q(z) = 0. This solution of (3.6) does indeed lie in 12 |  + ). 

N o w  returning to our  original Eq. (3.6) and substi tuting as before 
except with e = 0 and r = - 2 2 ,  we again find three matr ix  equations,  which 
lead immediate ly  to the results 

and 

22k7 = x, 22k = - y  

where c, k E C are some constants.  So there is no solution unless x + Y7 = 0. 
If now this extra condi ton holds, we find that  the solution to (3.6) is given 
by 

and 

1 
(3.19) 

It is then easily verified that  for any c ~ C this expression is an element of 
12 0 12(7/+ ). 

The case e = 0 deserves special at tention.  When  e = 0 we find that  the 
quadra t ic  Q(z) has two roots  - 2 2 ,  - 1 / 2 2 ,  distinct when e r E. Note  that  
r is the unique root  of modulus  < 1. If 0 < IZI < 1/2, then r = - 2 2 ,  while if 
12[ >1 /2 ,  then r = - 1 / 2 2 r  If 121 =1 /2 ,  then r=s= _+1 and thus 
ecE, which is ruled out  for the purposes  of  case (b') .  Hence we may  
conclude that  when •2= 1, 2 r  eq~Eu -1(2, 7 ) u i ( 2 ,  7), and e = 0 :  

(i) If 121 > 1/2, a unique solut ion to (3.6) i n / 2 @ / 2 ( Z + )  exists for all 
x, y e C .  It  is given by (3.16)-(3.17). 

(ii) If  0 < 121 < 1/2 and x + 7Y r 0, then no solution to (3.6) exists. 

(iii) If  0 < 12l < 1/2 and  x + T y = 0 ,  then multiple solutions to (3.6) 
exist in 12 G 12(~ + )- They are all given by expressions of the form 
(3.18)-(3.19) with c ranging over  C. 

(iv) If 0 <  121 < 1/2, then K+ has a one-dimensional  eigenspace at 
e = 0. The eigenvectors .are  easily constructed f rom (3.18~(3.19).  
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The analysis is much  simpler when e lies in the spectrum of K: 

N o  solution unless (22 + e)x  + (22 - e)Ty = O. (i') 
(ii') If  (22 + e)x  + (22 - e)?y = 0, 

exists and is given by 
then a unique solution to (3.6) 

( f ( n ) ~ = ( O )  i fn>O and ( f ( O ) ) = x - Y 7 ( i )  (3.20) 
g(n)J \ O J  \ g ( O ) J  42 

Note  that  while e = 0 is allowed in this case it occurs only when [2[ = 1/2. 
Hence, if 7 2 = 1 ,  2 # 0 ,  e e E u - I ( 2 ,  V ) u I ( 2 ,  7), and e = 0 ,  then we may  
extend the conclusions above  to: 

(v) If [2[ =1 /2 ,  no solution to (3.6) exists unless ( 2 2 + e ) x +  
( 2 2 - e ) y = 0 .  

(vi) If [21 = 1/2 and (22 + e)x  + (22 - e) y = 0, then a unique solution 
to (3.6) exists and is given by (3.20). 

We still have to deal with Eq. (3.6) in the anomalous  case where 72 = 1 
and 2 = 0. St ra ightforward algebra yields in this case that  if e r {0, - 1, 1 }, 
then a unique solution (sg) exists for all x, y e C and is given by 

s 1 ?(1 

where 
x + 7y - 2e2x y + ?x - 2e2y 

h ( O )  - , k ( O )  = 
e e (3.22) 

=2 - 7 ( 2 x / e + c o ) J '  k T ( e c o - c i J ' " "  

7(eG - c, + 1)J 
(3.24) 

h(1)=Tf-x, k ( 1 )  = y - y x  

If e = 0, then no solution exists to (3.6) unless x + 7Y = 0 when all solutions 
(~) satisfy 

(f) = ((,;) (~ (~ 
where c e C. Obvious ly  then e = 0 is an eigenvalue of K+ in this case. N o  
solution exists to (3.6) for e =  -t-1 unless x - ? y = O  when all solutions ( f )  
are given by 
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where (cn)~/2(7} +). Hence 1, - 1  are eigenvalues e for K+ when 7 2=  1 and 
,~=0. 

We now summarize the essential results in the following proposition. 
Observe that a(K) = Ew -I(2, 7) w I(2, 7) is the spectrum of the two-sided 
operator. 

Proposition 3.1. When 72----1, Eq. (3.6) has the following 
properties: 

(i) e is an eigenvalue iff e = 0  and k~] < 1/2 or 2 = 0  and e =  _+1. 

(ii) For e r (K) and not an eigenvalue of K+ a solution always exists 
and is unique. 

(iii) For eta(K) or an eigenvalue of K+,  a solution (Yg) exists to 
(3.6) provided x, y satisfy a linear relation. The coefficients of x, 
y in this relation are functions of 2, 7, e. The solution is then 
unique unless e is an eigenvalue. 

(iv) When e is not an eigenvalue and a solution exists, then the 
solution (Ig) satisfies 

(~) (n,--T(n,e,~,7,(;) 

where T is a rational function of e, r, 2, 7. 

(v) The possible eigenspaces at 0, -t-1 are one- and infinite-dimen- 
sional, respectively. 

4. SPECTRAL ANALYSIS FOR y 2~1 

In moving from the Ising model with field (y 2= 1) to the XY-model 
with field, the complexity of the calculations increases significantly, though 
the analysis is essentially of the same kind as before. Several new "special" 
cases will arise, which somewhat obscures the argument. As no further 
insight is gained from their inclusion, we will omit most of the details and 
concentrate on the differences from the special case where 72= 1. 

From (3.10) we have that when n r {0, 1 } the coefficients f(n) and 
g(n) satisfy the difference equation 

82 4e 2 -  1622 - 2 ( 1  + 7 2) 
p(n+ Z)-72--~_ l P(n+ l)+ 72_1 p(n) 

82 
72 l P ( n - - 1 ) + p ( n - 2 ) = 0  
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and thus for n >~ 0 one finds that f(n) and g(n) are given by 

o ( r i ) -  1 o ( r i ) -  1 

f ( n ) : Z  Z a,JnJrT, g ( n ) = Z  2 b~nJr7 
r i 0 ri 0 

(4.1) 

where r i denotes the distinct roots of the quartic Q(z)=0 of (1.19), o(ri) 
the multiplicity of the root, and a~j, b U some constants from C. The condi- 
tion that f, g El2(Y-) constrains the coefficients in the expressions (4.1) so 
that if Ir~l/> 1, then a , j=  0 = bo.. 

We use the notation r, l/r, s, 1Is to denote the four roots of the quartic 
with the convention that r and s have the smaller modulus. Note that this 
notation does not preclude the roots having multiplicity greater than one. 
With the analysis of the roots of the quartic given in Section 1 in mind, it 
follows that solutions (fg) must take one of the following forms for n >/0: 

(A) f n -  a~ r" ( g ) ( )  - (b~) + (~2) S" if there are two distinct roots of modulus 
<1.  

(B) (fg)(n) = (~1) r" if there is one root of modulus < 1 and one of 
modulus 1. 

(C) (~)(n) = (o) when all roots have modulus 1. 
a 2 n (D) (fg)(n)=(ab~)r'+(b2)nr if there is a repeated root of modulus 

<1.  

The form of possible solutions changes as e varies over C. We detail this: 

0(i): e 2 e { ( l + 2 2 ) 2 , ( 1 - 2 2 )  2} and a repeated root, either ___1, 
occurs. Forms C or B apply, respectively, when the remaining 
roots of the quartic have modulus one or not. The circumstan- 
ces determining which occurs are explained below. 

0(ii): e2=[(422+~2-1)72]/(~2-1)  and all roots are repeated. 
Forms C or D apply, respectively, when any root has modulus 
one or none has. This ambivalence is also explained below. 

1: e C E u a ( K ) = E w - I ( 2 , 7 ) u I ( 2 , 7 )  and the four roots are 
distinct and none has modulus one, so that two have modulus 
less than one. Form A applies in this case. 

2: e~cr(K)\Eu(-11+21211,-11-21211)w(ll-21211,11+21211) 
and there are four distinct roots and all have modulus one. 
Form C applies. 

3: e~  ( -  I1 + 2 I,~11, - 1 1 - 2  1211)w (11 - 2  I,~11, 11+2 I,~11) and 
the four roots are distinct, two have modulus one, and precisely 
one has modulus less than one. Form B applies. 
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The cases 0(i) and 0(ii) are not  necessarily distinct. If the parameters  are 
such that  122/(72-  1)[ = 1, then 

422 + 72 - 1 
e2- 7 2 _ 1  7 2 e { ( 1 + 2 2 ) 2 , ( 1 - 2 ) ~ )  2} 

Otherwise the cases are exclusive, as the points  of E are never included in 
the intervals mak ing  up +1(2,  7)- If case 0(ii) occurs and 122/(72 - 1)l > 1, 
then no root  has magni tude  one, so that  there is a single root,  of multi-  
plicity two, having magni tude  less than  one and hence solutions must  have 
f o r m D .  If case 0(ii) occurs and 122/(72-1)1~<1, then all roots  have 
magni tude  one and hence any solution must  have the form C. The case 0(i) 
is somewhat  compl ica ted and w e  examine the details. In the following 
circumstances all roots  of Q(z) have modulus  one and thus solutions to 
(3.6) must  have the form C: 

(a) 12~/(72- 1)1 ~< 1 and 72> 1 and e 2 =  (1 + 2  I).t) 2. 
(b) 122/(72- 1)1 ~ 1 and 72<  1 and e 2 =  (1 - 2  121) 2 . 

These condit ions a m o u n t  to e being an interior point  of +1(2,  7). When  
2 = 0 or e is in case 0(ii) a l so - - th i s  occurs when 122/(72- 1)l = 1 - - then  all 
roots  again have modulus  one and solutions to (3.6) must  have the form C. 
Otherwise exactly one root,  not  repeated,  has modulus  less than one and 
solutions of (3.6) have the form B. 

We now move  on to calculate the solutions to (3.6). We state the 
result as follows. 

P r o p o s i t i o n  4.1.  

(a) The  generalized eigenvalue p rob lem (3.6) has a one-dimensional  
affine space of solutions iff e = 0, 7 g= 0, and 422 < 1 for all x, y 
satisfying x + 7Y = 0. 

(b) If 422/> 1 or 7 = 0, there is at most  a unique solution (s to (3.6) 
when e = 0. When  0 q} a (K)  a solution will always exist, When  
e = 0 e ~(K) a solution will exist iff x, y satisfy a linear relat ion 
determined by 2, 7- 

(c) If e r and e r a(K),  there is a unique solution (~) to (3.6) for all 
x, yeC. 

(d) When  e r  and eta(K) and Q(z) has no roots  of modulus  one 
there is no solution unless x = y = O, when we have only the zero 
solution for (~). 

(e) When  e r  and eel(K) and Q(z) has a root  of modulus  less 
than  one there is a solution to (3.6) provided x, y satisfy certain 
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linear relations. Then there is a unique nonzero solution. The 
coefficients in these relations are given by polynomial functions 
of 2, 7, e, and the roots ri of Q(z) of modulus less than one. 

(f) If a solution (r exists and is unique, then it satisfies matrix 
equations of the form 

for each n ~ Z, with ri denoting the roots of the polynomial Q(z). 
The 2 x 2 matrix T has entries which are rational functions of 
e, 2, 7, ri. 

(g) The one-sided operator K+ has an eigenvalue iff 7 ~ 0  and 
422 < 1. This occurs at 0. 

Remark. Notice that the first part of the proposition says that e is an 
eigenvalue of the one-sided operator K+ only in the region of 7, 2 space 
where there are two ground states. (4) 

We sketch the proof as e varies over the regions of C described above. 
Some special subcases will arise with particular values of the parameters 2, 
7 which will complicate the exposition. 

C a s e  1. If a solution exists, it has form A, where, as in Section 3, 
we may restrict the values of the constants (the a's and b's) by expressing 
them in terms of x, y, 7, 2, e, and the roots r, s. We introduce the notation 

r 2 1 s 2 1 
R ?  = S +  ( 2 2 _ + e ) r + ~ ,  S ?  = 7 +  ( 2 2 + e ) s + ~  

(4.2) 
R2 = 7(r 2 - 1 )/2, $2 = 7(s 2 - 1 )/2 

Substituting the form A into (3.6), we obtain for n = 0 the equation 

,4.=, 
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while for n > 0 as r, s r 0 and r r s we obtain 

(R12 R~- R 2 ) ( ; : ) = ( 0 0 ) = ( $ 1 2  S +$2) ( ; I )  (4.4) 

Subcaso I. I, 7 = 0. A brief calculation reveals that the solution (~) 
to (3.6) must satisfy 

where 

(;)/., 1 for n~>0 (4.5) 

Q(z) = [z2/2 + (22 + e)z + 1/2] [z2/2 + (22 - e)z + 1/2] 

and t + is the root  of the first (resp. second) factor of Q(z) with modulus 
less than one. The vector given by (4.5) is now easily shown to be the 
unique solution to (3.6). Note that we cannot have e = 0  in case 1, for, with 
7 = 0, 0 e E, which is covered by case 0. 

Subcaso 1.2. 7 r 0, + 1. We use (4.4) to eliminate al ,  a 2 from (4.3) 
to get 

( 7+Rz/R~- 7 + S z / S l  "] (b l /2r ' ]=(;  ) (4.6) 
1 +TR2/R;  1 +TS2 /S (J \b z /2 s ]  

The determinant of this matrix is zero if and only if R 2 S  1 - -  R 1 S  2 = 0 = 

S~--R2-R~-S2, which is equivalent to e = 0  and 22(1 + r s ) + r + s = O ,  as 
~ 0 and r, s are the two (distinct) roots of modulus less than one. Now 

we are assuming that e r o-(K), and hence 

(422 + 72 - 1 ) ~2 
e 2 r (1 _+ 22) 2 nor 7 2 -  1 (4.7) 

Further notice that 0 r  7 ) u i ( 2 ,  7). Consequently, 0 is within the 
region covered by case 1 if and only if 1 + 22 r 0 and 422 + 72 - 1 r 0, i.e., 
if and only if 0 r E. Further, with e = 0, the roots of the quartic Q(z) are 

- -  2 2  _ ( 4 2 2  + 72 _ 1 ) 1 / 2  - -  22 _+ (422 + 72 - -  1 ) 1/2 
(4.8) rl.2 -.  1 -I- 7 ' r3'4 = 1 - 7 

Note that this labeling above does not agree with that given in Section 1. 
They are all distinct when 1_+22r  and 422+7 z -  1 r  and y 2 r  1. 
Furthermore, with these conditions applied to 2, 7 and with ri, rj denoting 
two of the roots from (4.8), the equation 

2 2 ( 1 + r l r j ) + r i + r j = 0  
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holds if and only if 
determinant  of (4.6) 
and [r3[, Ira1 < 1. It 
have magni tude less 

With e = 0 and 

{r,, rj} = {r 1, r2} or {r3, r4}. It also follows that the 
in this subcase is zero i f f e = 0  and [rll, [r2] < 1 or e = 0  
remains to be calculated which of the roots in (4.8) 
than one, that  is, whether {r ,s}  = {rl ,  r2} or {r3, r4}. 
422 ~ 1 -- y2 then 

I r l l  = Ir2l = ~ -  1 1/= 1 1 
7 - ~  Ir3l Ir4l -~ 1 

the latter as y # 0 .  It is then immediate  that {r, s} = {rl,  r2} or {r3, r4} - -  
according as y is greater or less than z e r o - - a n d  hence the determinant  is 
zero. Further ,  with e = 0, it cannot  be that  422= 1 - ~ ) 2  lest e then also lie 
in the disjoint region covered by case 0(ii). On the other  hand, when e = 0  
and 4).2> 1 -]22 the constraint  {r, s} = {rl ,  r2} or {r3, r4} is equivalent to 
(r 2 - r~)(r  2 - r~) > 0, which simplifies to 1 > 4,~ 2. 

We may summarize the discussion of this subcase by asserting that  the 
matrix in (4.6) has zero determinant  if and only if e = 0  and 4,)~2< 1. 
Further ,  in this subcase, it cannot  be that  e = 0 and 422= 1 or e = 0 and 
4)~ 2 = I - -  7 2. On the other  hand, if e = 0 and 1 ~ 4). 2, the determinant  is 
nonzero.  

Now .(when e = 0) the quartic Q ( z )  factorizes as 

1 
1 _ 7 2  [(I + y)Z2 +4)LZ + (1-- Y)][(1-- y)Z2 + 4~'Z + (I + Y)] 

which implies R + = R i- = _+R2 and similarly for the S +. The roots are so 
labeled in (4.8) that  r l ,  r2 are roots of the first factor and r3, r4 of the 
second. Let  422 < 1. Since 

_ -  _ -  1 

we have {r, s} = {rl ,  r2} or {r3, r4}, depending on whether  7 > 0  or y <0 .  
It follows that 

R + = R 1- = - - R  2 and S~- = S 1 = - - 3  2 when 7 > 0 

R ~  = R 1 = R 2 and S~- = S (  = $2 when 7 < 0 

Similarly, with e = 0  and 422>~1 we have {r, s} = {rl,  r3} or {rz, r4} and 
hence 

R~- = R~- = - R 2  and S~- = S~  = $2 

R~  = R ~  = R 2  and S~- ---S~ = - S  2 
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according as r denotes the root of the first factor and s the root of the 
second factor or conversely. Using these obsrvations, one easily arrives at 
the following conclusions. 

Subcase 1.2.1. e=O, 422< 1, y >0.  There is no solution to (3.6) 
unless x + y = 0, whereupon it is given by 

I f  ) 2X / 1 ,  s~+l) (11) (n)=~7~l)r~+'+c. (rn+t- -  for n>~0 (4.9) 

where r, s are the distinct roots of the factor of the quartic given by 
(1 + 7) z2 + 42z + (1 - 7) and c is an arbitrary constant. 

Sulocaso 1.2.2. e = 0 ,  422< 1, 7 <0.  There is no solution to (3.6) 
unless x - y  = 0, whereupon it is given by 

(5) ,2x (_11) ( n ) = T T -  ]- rn+l"k-c'(rn+t--sn+l) for n~>O 

(4.10) 

where r, s are the distinct roots of the factor ( 1 - y ) z 2 + 4 2 z + ( 1  +y )  of 
Q(z) and c is an arbitrary constant. 

Subcase 1.2.8, e = 0, 12] > 1/2. The solution to (3.6) is unique and 
is given by 

( f )  (n)=1~--7  ( Y - X  11)r+"+l +i--~yy+X(-ll)r~+l- for n > 0  (4.11) 

where r+ is the (unique) root of modulus less than one of the factor of the 
quartic given by (1 + 7 ) z 2 +  42z+ ( 1 - 7 )  and r_ is the (unique) root of 
modulus less than one of the factor (1 - y) z 2 + 42z + (1 + y) of Q(z). 

Subcaso 1.2.4. e e0 .  The matrix in Eq. (4.6) cannot have zero 
determinant if e r 0. Hence it may be inverted and the solution (Ig) to (3.6) 
is seen to be unique and given by 

2r~+l ( - R ~ S ~  - -R+$2"](7 -1  x 
(Ig) j\l 

2 ,  " + '  s e; s e2 
+ ~ - & R ?  - R 2 s 2 J \ l  - y  y 

(4.12) 

where G=(1-Tg)(R~S2-S~R2), the entries R2, $2, R~, S~ are as in 
(4.2), and r, s are the two (distinct) roots of the quartic (1.19) whose 
magnitudes are both less than one. 
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C a s e  0( i i ) .  This is the only other case in which the analysis is not 
straightforward. As before, we devide the discussion into various subcases. 

Subcase O(ii).l. [22/(72-1)[--.<1. Here (3.6) has only the trivial 
solution. Note that if e 2 = [--(422 + 72 - 1 )/(72 - 1 )] 72 = 0 and 7 # 0, it can- 
not be that [2j < 1/2 for 422= 1 - 7 2  and hence [22/(72- 1)1 ~< 1 implies 
[2[ ~> 1/2. In fact, it must be that [2[ = 1/2, since also 422= 1 - 7 2 e  [-0, 1]. 
However, e = 0 ,  7 =0,  and ]2] < 1/2 is possible in this subcase. 

Subcase O(ii).2. [22 / (72-1) [>1 .  Form D applies and further 
subcases are required. 

Subcase O(ii).2. 1. 7 = 0. In this subcase e = 0 and [2[ > 1/2. Denote 
the root of modulus < 1 by r. Then the solution, by the methods of case 1, 
is 

--2x 

Subcaso 0(ii).2.2. 7 # 0. Again we must consider subcases. 

Subcose 0(ii).2.2. 1. e r  The solution (f) to (3.6) is unique and 
given by, for n >/0, 

2 r  n 

x 
7 1 y 

(4.15) 

Subcase 0(ii).2.2.2. e = 0 .  Observe from the conditions of this 
s u b c a s e ~ 2 : ~ O ,  1 and O = e  2=  [ - (422+72-  1) / (72-  I ) ]  72--that 422= 
1 - 7 2  and thus from the condition 122/(72-1)1 > 1 we have O< 1221 <1.  
Conversely, if e2 ----- [,(422 -+- 72 --1)/(72 - -1) ]  72 = 0 and 72=~0,1 and 
1221 < 1, we have 122/(72- 1)1 > 1 and 2 # 0  for 122[ > 4 2 2 =  1 - 7 2 > 0 .  It 
follows that when 7 > 0  a solution of (3.6) exists only if x + y = 0  and is 
then given for any d e C by 

(fg)  ( - 2 2 ) " ( x / 2 + d ( n + l )  ) 
(n)=  \1  +7,/  - y /2+d(n+l )  for n~>0 (4.16) 

When 7 < 0, a solution of (3.6) exists only if x - y  = 0 and is then given for 
any d e  C by 

( - - 2 2 ) "  ( x/2 +d(n+ 1 
( f ) ( n ) = \ l - - T ]  \ - y / 2 - d ( n + ) l ) )  for n~>0 (4.17) 
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We conclude then that  when e = 0  in this subcase we must  have 
t2[ < 1/2 and the generalized eigenvalue problem has a solution only if the 
initial condit ions satisfy the constraint  x _+ y = 0, respectively, as 7 is greater 
than or less than zero. When  a solution exists there is in fact a one- 
dimensional  affine space of solutions. 

Case 2. Here there is no solution unless x = y  = 0 and then it is the 
trivial solution. 

Case 3. If 7 ~ 0 ,  the only solution is 

7 x for n >~ 0 
(n) = 1 - 7 ~ 1 y 

where r is the unique root  of modulus  less than one, while if 7 = 0, then 
no solution exists unless either x = 0 or y = 0. In either case the unique 
solution is given by 

for 

Case 0 ( i ) .  As in the preceding, there are a number  of subcases to 
consider. Observe that  in this case if e = 0, then it must  be that 121 = 1/2. 
So we have: 

(a) e2 = [(422 + 7 2 - 1 ) / ( 7 2 - 1 ) ]  72 [ = ( 1 + 2 2 )  2 ] and the only 
solution to (3.6) is the trivial one. 

(b) 2 = 0  or equivalently I1 +221 = l1 - 2 2 1  = 1 and only the trivial 
solution occurs. 

(c) e2-~ [ ( 4 2 2 + )  ' 2 -  1 ) / ( 7 2 - 1 ) ]  72 and 2 # 0 .  The solution must  
have the form C or B according as e lies in the interior of _+ 1(2, 7) or its 
boundary .  If  it has form C, then as above, no solution exists unless 
x = y = 0 and it is then the trivial one. When  e lies on the boundary  and 
7 = 0, no solution exists unless x = 0 or  y = 0. When  e lies on the boundary  
and 7 r  no solution exists unless (TRz+R~-)x--(TRI+R2)y=O or 
equivalently (R2 + 7 R ; - ) x -  (TR: + R ; - )  y = 0. If either of these sets of 
condit ions is satisfied, the unique solution to (3.6) is given by 

7 x for n~>0 
(n) = 1 - 7 ------2 1 y 

This completes the p roof  of  Proposi t ion4.1 ,  a l though of course we 
have proved much more  here than is required for that result. | 
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5. S Y N T H E S I S :  E I G E N V A L U E S  OF THE T W O - S I D E D  P R O B L E M  

In Section 3 we commented that the solution of (3.6) could be used to 
detail the point spectrum of K +  V. We begin by reviewing Section 3 in the 
light of Proposition4.1. Suppose e is an eigenvalue of K+ V-el  with 
w = (f) a corresponding eigenvector. Then we have that PR w is a solution 
in l 2 @ 12(77 + ) of 

(K+()~,7)-el+)(hk) =PR(K(.t, 7)-el)pR(hk) 

=( -F- df(M))\g(M)j' 0, 0,...) (5.1) 

This follows by identifying the space of square-summable sequences on 77+ 
with those elements of I 2 (~/2(77) supported on [ M +  1, oo). With S denot- 
ing the reflection operator (as in Section3), one finds K satisfies 
SK(2, 7)S=  K(;~, -7 ) ,  so that SPLw is a solution in lzG/2(77+) of 

(K+ ( 2 , - 7 ) - e l + ) ( h k ) = S P L ( K - e l ) P L S ( h k )  

=( -F+{f(N)~O\g(N)j' ' 0,...) (5.2) 

This follows from SPL = P [ - N +  i ,~)  S and identifying the space of square- 
summable sequences on 77+ with those elements of l 2 (~/2(7/)  supported on 

(~ N C in the [ - N +  1, 00). Finally, by identifying the range of Pc with M 2 
obvious way, we find that Pcw is a solution i n |  M C 2 of 

Pc(K+ V-el)Pc(hk) 

=(--/-' \g(N-1){f(N-1))'0'0 ..... 0,0,-F+(f(M+I)'~'~\g(M+I)jj (5.3) 

This requires an obvious identification of this finite-dimensional space with 
a subspace of lzGl2(Z). Most importantly, restricted to this subspace 
Pc(K+ V-e l )Pc  is a matrix operator. 

The results of the last section now imply a number of facts about the 
solutions to these equations. For e r 0, _+ 1, the one-sided problem has at 
most one solution for any given initial (3)" This is also true for 0, +1 
provided they are not in the point spectrum of K(2, ~). Any nonzero eigen- 
vector w=(Yg) of K+ V-el  yields a nonzero vector Pcw. Otherwise 
f(M) = g(M) = f ( N )  = g(N) = 0 and thus SPLw = PRw = 0 are the unique 
solutions of (5.2) and (5.1) with the right-hand side equal to the zero 
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vector. It would then follow w is identically zero. In addition, we have 
from Proposition 4.1 for e not an eigenvalue of K+(2, +7)  that 

(f(M)~ (5.4) \g(M+(f(M+ 1))l)j = --T(0, e, 2, 7, ri)F_ \g(M)J 

) :  (f(N)~ (5.5) \ g ( N -  1 ) ( f ( N -  1) -T(0 ,  e, 2, - 7 ,  ri)F+ \g(N)) 

where T(0, e, 2, +y, ri) is a 2 x 2 matrix operator with its entries rational 
functions of e, 2, 7, ri. The r~ are the roots of the polynomial Q(z) of 
(2.5)-(2.6). 

Finally, Pcw is a nontrivial solution in 12012[N , m ]  of 

[Pc(K+V--el)Pc--D(e,X,--7)PN--D(e, 2,7)PM](~)=O (5.6) 

where D(e, 2, V) = F+ T(0, e, 2, V) F , and PN, PM denote the projections 
onto the two-dimensional subspaces consisting of sequences with support 
in the N and M slots, respectively. Hence the (M-N+ 1)x (M-N+ 1) 
matrix on the left-hand side of (5.6) has zero determinant. 

We have a partial converse to this last result. 

I . emma  5.1. Whenever the matrix in (5.6) is singular with 
e r o-(K+ ), then e must be an eigenvalue of K +  V. 

Proof. Let the matrix in (5.6) be singular. So there is a nontrivial 
solution (gS~) of (5.6) which we identify with its image in 12| 12(Z). With 
eel(K+) we may solve the generalized one-sided problem for K+(2, 7) 
and obtain a unique solution when 

\gc(M)J 

Denote the image in 12| 1, oo) of this solution by sR (g,). Similarly we 
solve the one-sided problem for K+ (2, - 7 )  and get a unique solution when 

\gc(N)) 
fz Label its image in 12 ~b 12(-oo, N - 1 ]  by (gL)" It is easy to see that, with 

the obvious abuse of notation, 

(2):(2++2;r 
satisfies ( K +  V-e l ) (Sg)=0 .  Note that (Sg)is not the zero vector. I 
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The preceding discussion deals with the relationship of the discrete 
spectra for the one-sided and two-sided problems. There is a 
straightforward way of relating perturbations of the one-sided problem to 
perturbations of the two-sided problem which is useful for our main 
theorem as well as the discussion below. We regard /2G/2(Z+) as a 
subspace of/20/2(7/) ,  and introduce the shifted reflection map R via 

\g(n)J g( -1  n) 

so that l 2 @/2(7/) = R(12 G/2(2 z + )) �9 12 �9 + ). Now define on 12 | 
the operator Vo by 

1\7~/2 u*/2]P~ 
+ P o ( - U * / 2  7U*/2~ 

Then for each perturbation V of K+ we introduce the perturbation P of K: 

V= RYVYR + V+ Vo (5.8) 

where Y denotes the operator on /2(~12(7/) defined by the matrix of 
operators 

Proposi t ion  5.2. 

(a) 

(b) 

(c) 

(10 

aess(K( 2, 7 )+  V)= ~ress(K(2, 7))' Thus the spectrum of K +  V con- 
sists of ~r(K) together with a discrete set of points in ~ which 
may accumulate at the endpoints of ~(K). These points must be 
eigenvalues of finite multiplicity. 

K ( 2 , 7 ) + V = K + ( 2 , 7 ) + V + R Y [ K + ( 2 , 7 ) + V ]  YR. Thus the 
spectrum of K +  ~" is the same as that of K+ + V and indeed the 
same is true for each of the absolutely continuous, singular 
continuous, pure point, essential, and discrete spectra. 

a~ss(K++V ) = Cre~s(K ) = or(K) = -I(2,7)wI(2,7) = Ew 
-I(2,7)wi(2,7) when 7 2 r  or  2 r  In the case 72=1 and 
2 = 0  one finds ~r~s(K + + V) = ~r~(K+ ~') =r = E =  
{I, - 1 } .  
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(d)  Unless 7 2 =  1 and 2 = 0  one finds that at(K+ + V)= 
a,ss(K+ + V). 

(e) When 72= 1 and 2 = 0  one finds at(K+ + V) and at(K+) are 
empty. 

(f) When 72 = 1 and 2 = 0 one finds ~c(K+ V) and o-c(K) are empty. 

C o r o l l a r y  5.3. When 72~;~1 or  ~.~;~0 the set a(K+) equals E u  
-1(2, 7)w 1(2, 7) and possibly the point 0. The latter point 0 is included if 
it is already in E or it is an eigenvalue. Otherwise it is not in the spectrum. 
It is an eigenvalue iff 7 v a 0 and [2[ < 1/2. The former set is the continuous 
spectrum of K+.  

C o r o l l a r y  5.4. When 7Z=l  and ,~=0 the spectrum of K+(2,7) 
consists only of eigenvalues with the continuous spectrum being empty. 
The numbers + 1 are eigenvalues of infinite multiplicity, and 0 is also an 
eigenvalue with the corresponding eigenspace being one dimensional. The 
residual spectrum is also empty. 

We omit the proof of this proposition and the corollaries, for in each 
case the results follow from simple calculations or well-known facts. 

Proposition 5.5. For a local perturbation V of K+,  when 7 z # 1 
or 2 # 0, one has 

~,o(K+ + V) = eat (K+ ~') = Ew -1(2, 7)wI(2, 7) 

For a perturbation V' of K one has 

~,c(K + V')=Ew -1(2, 7)w I(2, 7) 

Proof. From part 2 of Proposition 3.1 of ref. 10 there is an isometric 
operator mapping l 2 G 12(•) onto the subspace of absolute continuity of the 
operator K +  V. This operator g?+ satisfies the intertwining properties 
g?+ exp(iKt)=exp(i[K+ V]t) g2+ and g2+K=exp(i[K+ V]t) ~2+. As the 
spectrum of K is purely absolutely continuous for any e in the spectrum, 
there is a sequence of vectors ( f , ,  g,) each of norm one which satisfy lim, 
]l(K-el)(f,, g,)]] =0.  Then the modified sequence {g2+(f,,  g , ) )  has its 
range in the subspace of absolute continuity of K +  V and each new vector 
has norm one also. Furthermore, for any e E a(K) one now finds 

II((K+ V ) - e l ) f 2 + ( f ~ ,  g,)ll = Ilg?+(K- el)(f~, g,)l[ 

= l l ( K - e l ) ( f , , g , ) l l  " ~ ' 0  

It follows from the Weyl criterion that e is in the spectrum of K +  v 
restricted tO its subspace of absolute continuity and hence to the absolutely 

822/68/5-6-10 
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continuous spectrum of K +  V. The result for the one-sided case follows 
now from aac(K + + V ) =  aac(K+ ~'). | 

P r o p o s i t i o n  5.6. Except when 2 = 0  and 72= 1 all eigenspaces of 
K +  V are finite-dimensional. ]n the exceptional case the eigenspaces at 
e = _+1 are infinite-dimensional but all others have finite dimension. The 
same statements are true for perturbations of the one-sided operator as 
well. 

Proof. As K has no eigenvalues, it follows that K - e l  is one to one 
on the eigenspace of any eigenvalue e of K +  V or indeed any finite-dimen- 
sional subspace of the latter. Further, V has a finite-dimensional range. 
Observe now if (K+ V-e l ) ( f ,  g ) =  (0, 0), then (K-e l ) ( f ,  g ) =  -V( f ,  g) 
and hence the range of K - e l  is contained in the range of V. If the 
eigenspace were infinite-dimensional, we could choose arbitrarily large 
subspaces which are mapped one to one by K - e l  into this fixed finite- 
dimensional subspace, a contradiction. | 

P r o p o s i t i o n  5.7. The operator K +  V has only finitely many 
eigenvalues. 

The rest of this section is devoted to the proof. We note that this 
might be.expected to follow from general theory as V is only finite rank; 
however, we have been unable to find such an argument. Consequently we 
are forced to use a "bare hands" approach. The special case where 72= 1 
is separated from the other cases as it is somewhat simpler computationally 
and illustrates some of the approach to the more difficult case when 72 # 1. 
The case where 72= 1 and 2 = 0 is a degenerate case and can be solved by 
soft methods. 

Tho Caso g 2 = 1 ond A 4= O. We note that K+ has at most one eigen- 
value, at 0, and only when 121 < 1/2. Suppose e # 0  lies in the spectrum of 
K+.  Then as 72= 1, we find D(e, 2, 7 )=  0 and so if e is an eigenvalue of 
K +  V, it is a zero of the polynomial, det(PcKPc+ V - e l ) = 0 .  There 
are only finitely many such zeros and so there are only finitely many 
eigenvalues in the spectrum of K +  V. 

When e # 0 lies in the complement of the spectrum of K+ we find that 

- - r  
D(e, 2, 7) F+ 

42(r + 22) 

(42(r + 22 +e)+er -7er ) 
x -Ter e r -42 ( r+22-e )  F 

_ r e  ( - 1  71 ) (5.9) 
2Z(r + 22) 7 - 



Mult iple Phases and Return to Equilibrium 817 

where r is the unique root of 

22z 2 -k- (422 + 1 -- e2)z + 22 = 0 (5.10) 

with magnitude less than one. As e:A0, it must be that r 4 = -2 2 .  The 
determinant of the matrix in (5.6) then simplifies to 

W(e, r, 2, 7) 
,)4( r + 22)4 (5.11) 

where W is a polynomial in each of its variables. 
It follows from this discussion and the fact that e is an eigenvalue of 

K +  V not equal to 0 and not in a(K+) that there is a pair (e, z) with z 
of modulus less than one which simultaneously satisfy (5.10) and 
W(e, z, 2, 7 )=0 .  From the algebraic geometry of plane curves there are 
only finitely many solutions to such equations unless they share a common 
factor in the ring of polynomials in two variables over C; see, for example, 
ref. 9. Now observe that if (5.10) factors into a product of polynomials, 
these polynomials must be either linear or constant in z with coefficients 
which are polynomials in e independent of z. However, it is easy to see by 
computing the degrees in e of these coefficients that (5.10) cannot be so 
factored. Thus the polynomial  in (5.10) is irreducible in the ring C[e, z] 
and so must divide W. However, if the polynomial in (5.10) divides W, 
then W will equal zero whenever we find a pair (e, r) satisfying the former 
equation. As 2 r 0, for any e ~ a(K+ ) the polynomial equation in z in (5.10) 
has exactly one root of magnitude less than one and one of magnitude 
greater than one, neither equal to - 2 2 .  Consequently, for any e we can 
obtain a pair (e, z) which solves both Eq. (5.10) and W(e, z, 2, 7 ) = 0  and 
where Izl < 1. It follows that there exists e of arbitrarily large modulus 
which satisfies (5.6). Clearly then we may choose e r a(K+), so, as claimed 
above, e must be an eigenvalue of K +  V. So it follows that we can find 
eigenvalues of K +  V of arbitrarily large modulus, a contradiction. Hence 
K +  V has at most finitely many eigenvalues in C\a(K+) .  We demonstrated 
earlier there were only a finite number in ~r(K+ ). We make no claim as to 
whether or not 0 is an eigenvalue. 

The Case g2 = 1 and A = 0. The result in this case may be proven as 
in ref. 10. 

The Case g24= 1. We partition the complex plane into four sets, 
some of which may be empty; it will be convenient to define ~ as 
[72(422+ 7 2 -  1) / (72-  1)] 1/2. These four sets are as follows: 

(i) E ' = E w  {O}= {O, +1-1-22, _+3}. 
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(ii) We let Eo be the empty set when 12Z/(72- 1)[ >/1. Otherwise, for 
122/(~2-1)1 ~< 1 and 72~<1, Eo is the set ( - ] 1 + 2 1 2 ] ] , - 6 ) w  
(& [1+ 2 ]7] ] ). For 122/(~2-1)1~<1 and 72~>1, Eo instead 
denotes the set ( - &  - ] 1 - 2  ]~]])w ( 1 1 - 2  ]21 ], 6). 

(iii) E l = ( - l l + Z 1 2 ] ] , - l l - Z ] 2 1 1 ) w ( ] l - 2 ] 2 1 ] , [ l + 2 1 2 1 ] ) .  

(iv) We denote by E 2 the complement of E'w Eo u El. 

When e ~ E0 we see easily that there are only finitely many solutions. When 
e E El one finds 

r(1 
D(e, 2, )~)=-~ 7 

and hence that the determinant of the matrix in (5.6) yields a polynomial 
equation W(e, r, 2, 7) = 0. Here r denotes the unique solution z of the quar- 
tic equation Q(e, z, 2, 7) = 0 of magnitude less than one. As before, we can 
conclude from the theory of plain curves that unless these two polynomials 
in e, z share a common factor, the equations have only finitely many com- 
mon solutions. Now it is not hard to see that W is a quartic in z and degree 
2 ( M - N + I )  ine. The coefficient of z p is a polynomial of degree 
2 ( M - N +  1 ) - p  or less in e. In fact, the coefficient of z 4 is a polynomial 
in e of degree exactly 2 ( M -  N -  1), and that of z ~ is a polynomial in e of 
degree exactly 2 ( M - N +  1). The second polynomial Q(z), a quartic in z, 
is irreducible in the ring of polynomials in two variables C[e, z] unless 
~ 2 ( 4 2 2 + 7 2 - 1 ) = 0 .  If 7 = 0 ,  this quartic factors as [z2+(42+2e)z+ 1] 
[x 2 + (42 - 2e)z + 1 ], while it factors as 

when 4). 2 + 72 - 1 = 0. If Q(e, z) is irreducible and shares a common factor 
with W(e, z), then it must be that W(e, z)= Q(e, z) W2(e, 2, 7), where W2 
is constant with respect to z and a polynomial in e, though not necessarily 
a polynomial in 2, 7. This means that the coefficient of both z 4 and z ~ in 
W is the same, i.e., W2. Yet we have already observed that the coefficients 
of z 4 and z ~ in W are polynomials in e of differing degrees. So it cannot be 
in this case that Q is a factor of W in CI-e, z]. 

Now consider the possibility that 2, 7 are such that Q(e, z) factors, and 
that any of the factors listed above also divides W(e, z) in C[e, z]. The 
complementary factor, a polynomial in e and z, is a quadratic in z, say 
a(e)z2+ b(e)z + c(e). Compare W(e, z) calculated as a determinant with a 
product of this quadratic and any one of the quadratic factors of Q(e, z). 
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The coefficient of z ~ is c(e) and is a polynomial of degree 2 ( M - N +  1), 
which implies b(e) and then a(e) are polynomials of degree 
2 ( M - N +  1 )+  1 and 2 ( M - N +  1 )+2 ,  respectively. Yet the coefficient of 
z 4 is a(e) and must be a polynomial of degree 2 ( M -  N - -  1 ). So it follows 
in these circumstances that W and Q cannot share a common factor in 
C[e, z]. 

Hence it follows that Q and W can never have a common factor in 
C [ e , z ]  and hence the equations Q(e,z)=O and W(e,z)=O have only 
finitely many common solutions (e, z). So H(2, 7) + V has at most finitely 
many eigenvaues e e E 1 . 

Now we come to the case where e E E2. We find that for ~ = 0, 

/ 
T(0, e, 2, 0) = 

where t -+ are the unique roots 
z 2 + 2(22 __ e)z + 1 = 0, respectively. 
Q(e, z, 2, 0) = 0. When 7 r 0, 

2 ( (s-r)R~-S? 
T(0, e, 2, 7 ) = ~  \rR2S? -sS2R? 

2 ( (s-r)  R2S 2 
= -~ \rRIS2 - sS(R2 

- 2 t -  0 ) 
0 2t + (5.12) 

of modulus less than one of 
They are also distinct roots of 

sS:R2-rR+S2"](7 
(r-s)  R2S 2 ],1 --;) (5.13) 

sR:S2-rRzS~-'](7 

where G =  ( 1 - 7 2 ) ( R + S  2 - S ~ R 2 ) ,  G ' =  ( 1 - 7 2 ) ( R 2 S ~ - S 2 R ~ ) ,  and r, s 
are the distinct roots of Q(z) of modulus less than one and the other 
notation is as in Section 4. 

When ~ = 0  and e~E2 the determinant of the matrix in (5.6) is 
then seen to expand to a polynomial W(e, t +, t-, 2) in all the variables. It 
follows that there is a solution (e, t § t ) of the system of polynomial 
equations 

W(e,t+,t , 2 ) = 0 ,  (t+)z+2(22+e)t++l=O 

( t - ) z + 2 ( 2 2 - e )  t -  + 1 = 0  
(5.15) 

Conversely, any triple with e ~ E 2 and It +[, I t - I  < 1 will solve the determi- 
nant equation when 7 = 0. As e~E2 implies e 6 a(K+),  it follows from 
Lemma 5.1 that the existence of such a triple (e, t +, t - )  implies K +  V has 
an eigenvalue e. 

When y :~ 0 and e e E2 it can be calculated from (5.13)-(5.14) that the 
determinant of the matrix in Eq. (5.6) expands as the rational expression 
W'(e ,  r, s, ,~, ~)/G 4 = 0 ,  where W' is a polynomial in each of its variables. In 
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fact, when r, s denote the distinct roots of the quartic Q(e, z, 2, ~) = 0, the 
expression G is always nonzero. It now follows that if the determinant of 
the matrix in Eq. (5.6) is zero, there is a triple (e, r, s) solving the system 
of polynomial equations 

W'(e,r,s,)~,7)=O, Q(e,r, 2,7)=O, Q(e,s, 2,7)=O (5.16) 

Conversely, any triple with e e E2, r #-s, {rt, is{ < 1, will solve the determi- 
nant equation when 7 # 0, _+ 1. As before, the existence of such a triple 
(e, r, s) implies K +  V has an eigenvalue e. 

Now, with ~ =# 0, let S denote the solution set to the system of polyno- 
mial equations (5.16) in the variables e, r, s. Suppose eoeE2 is an eigen- 
value of K +  V. Then, as shown earlier, this implies there is a triple 
(co, ro, So)e S with ro # So and Ir0l, ISol < 1. We consider any such triple in 
S. As Ez=C\(E'wEowE1)=C\(a(K+)w {0}), S is an open set. It then 
follows that any (el, r l ,  s l ) e  S sufficiently near (e0, r0, So) also satisfies el e 
Ezc C\o'(K+), r~ #s~,  and Ir~l, Istl < 1. All of this will imply that et, the 
first coordinate, is an eigenvalue of K +  V. 

Note that E2 is a subset of the complement of a,s~(K)= C%s(K+ V) 
and hence any eigenvalue eo of K 4- V is in the latter's discrete spectrum 
and hence must be an isolated point of the spectrum. It follows that any 
triple (e0, ro, So) in S with eEE2, ror and Ir0l, [sol < 1 is an isolated 
point of S. Using ref. 11, Theorem III.4.4 and Theorem IV.5.1, we see that 
the set S of solutions is the union of a finite number of irreducible algebraic 
varieties each of which is a connected subset of C 3 in the Euclidean topol- 
ogy. Hence there can only be a finite number of such triples. Since each 
eigenvalue eo in E2 gives rise to a distinct triple of this description, it must 
be that- there is only a finite number of eigenvalues of K +  V in E2, when 
7 # 0. Clearly a virtually identical proof will establish this result when ~, = 0. 

With this we have successively established that K +  V has a finite 
number of eigenvalues in each of E0, El ,  E2. As E' is a finite set and these 
four sets partition C, it follows as claimed that K +  V has at most a finite 
number of eigenvalues in C. I 

6. ABSENCE OF S I N G U L A R  C O N T I N U O U S  S P E C T R U M  

We have already concluded for the anomalous ease of 72= 1 and 2 = 0 
that the continuous and hence absolutely continuous and singular con- 
tinuous spectra are empty; see Proposition 5.2. In what follows in this 
section we will assume that either 72# 1 or 2 # 0 .  The remaining cases 
again involve an elaborate calculation. We begin with some notation. Let 
Rv(e) and R(e) denote the resolvents of K +  V and K, respectively. 
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T h e o r e m  6.1 .  Let V be a bounded self-adjoint operator for which 

lim <(f),Rv(e)(f)> 
e ~ e o  

exists whenever (~) has finite support, e lies in the upper half-plane, and eo 
is restricted to - I()t, 7)w/(2 ,  7)\S', where S' is a discrete subset which can 
only have the points of E as accumulation points. Then the singular 
continuous spectrum of K +  V must be empty. 

Proof. We remark first that set containing eo is open and in fact is 
a countable union of open intervals each of which is itself a countable 
union of clot/intervals. So the set containing e 0 may be written as a count- 
able union of both some closed intervals [~i, fli] and the corresponding 
open intervals (~i,/3i). 

We will concentrate our attention on one such interval [c~,/3]. By the 
analyticity of 

outside the spectrum of K +  V the hypothesis that 

0 < e < l  dc 
sup f[ Im<(fg),Rv(e+ie)(fg)> e =oo (6.1) 

for some (~) of finite support and every p c ( t ,  oo) implies that there is 
some point e0 �9 [c~,/3] and some (~g) of finite support for which 

lim<(f),Rv(eo+ie)(f)> 
e ~ O  

does not exist. This is contrary to the assumptions of the theorem. So for 
all (1g) of finite support the left-hand side of (6.1) is finite for some 
p �9 (1, oo). The elements of finite support are dense in 12 �9 12(7/), so that by 
ref. 12, Theorem XIII.20, we find K +  V has purely absolutely continuous 
spectrum on the open interval (c~, fi). 

Now as the interval was chosen arbitrarily from the covering of 
- / ( 2 ,  7)w/(2 ,  7)\S' the singular continuous spectrum must be contained 
in the union of the discrete set S' with E, the endpoints of the intervals 
making up +_/(2, 7)- The singular continuous spectrum cannot contain 
isolated points and so the singular continuous spectrum is empty. | 
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Our task is to verify that the hypotheses of the theorem apply to our 
situation where V is a slf-adjoint local operator. Write the spectral 
representation of V as 

N 
V= ~, rj(vj, . ) vj (6.2) 

1 

for eigenvalues rj and orthonormal eigenvectors v j, j =  1, 2 ..... N. These 
vectors vj also have finite support within the support of V. Let D be the 
orthogonal projection onto the range of V. 

I_emma 6.2. Whenever R(e) is defined and 1 + DR( e ) V  is invert- 
ible, R v(e) also exists and further: 

(i) R v ( e ) = R ( e ) - R ( e )  V(1 + DR(e) V] -1 DR(e). 

(ii) DR(e) V=Zi,N=I r j (V  i, R(e) v j ) (v j ,  . ) vi. 

Proof. Straightforward algebra. | 

Using (6.2) and Lemma 6.2, it is clear that an inner product 

may be evaluated as a sum of inner products (i.e., matrix elements) for the 
operators R(e) and (1 +DR(e)V)  -1. That is, when (Yg) has finite support, 
the former inner product may be expanded as a finite sum of terms each 
a product of matrix elements of these operators between the vector (Yg) and 
the vectors of finite support vj from the representation (6.2) of V. Now 
if we can show that the matrix elements of R(e) are analytic in e in a 
neighborhood of -1(2,  7)wi(2,  ~), then the analytic Fredholm theorem 
(ref. 12, Theorem VI.14) implies that the matrix elements 

\ g ~ /  

are meromorphic as functions of e on this same neighborhood. Thus, by 
Lemma 6.2 the limits required by Theorem 6.1 exist except for a discrete 
subset of these intervals. 

Now observe that by Fourier transforming as in (2.4), 

((f:) 
may be written, for (2) of finite support, as a finite sum of integrals of the 
form 

2r~ e inO 

Int(n, e) dO (6.3) 
J o e  2 -- (cos 0 + 2)~) 2 -- 7 2 sin 2 0 
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where n is an integer and the coefficients are linear functions of the variable 
e. Moreover, the functions Int(n, e) are analytic for z in the connected 
components of the set R+ = {e [ ,3(e) > 0, 9t(e) e -1(2,  7) w 1(2, 7)}- Once 
we establish the next lemma we will have essentially achieved our goal. 

I . e m m a  6.3. All the integrals Int(n, e) have analytic continuations 
across the boundary_+ 1(2, 7) of the components of R+ to components of 
R =  {e I 9t(e)e - I (2 ,7)wi(2 ,7)} .  

Proof. These integrals may be evaluated explicitly by splitting the 
integrand into partial fractions and doing a contour integral in the variable 
z = e  i~ provided the denominator as a function of z has no roots of 
modulus one. The latter only occurs when e lies in the closure of 
- I (2 ,7 )wi (2 ,  y). Some, complication could also arise when e~E, i.e., 
when the roots of the denominator are repeated. However, R+ does not 
contain any point of the axes, and hence no point of either of these two 
sets. 

The result of the integral depends on the parameter values and we 
summarize the computations as follows: 

(i) 72#1.  The transformed denominator has four roots when 
e e R+,  two of modulus greater than one and two less than one. 
Adopting our previous notation where r, s denote the distinct 
roots of the quartic Q(z) of modulus less than one, we obtain 

I n t ( n , e ) =  STc rs [ r  I'1+' s I'1+1] 
1-72"(s-r)(l-rs) Ll--7 7--sSJ (6.4) 

(ii) 72= 1, Z # 0 .  The transformed denominator has two (distinct) 
roots when e �9 R +, one of modulus greater than one and one less 
than one. If r is the root of the quadrat ic-- to which Q(z) 
reduces--with Ir[ < 1, we obtain 

g r lnl  + 1 

Int(n, e ) =  2 1 - r  2 (6.5) 

To facilitate the analytic continuation, we note, by ref. 11, 
Theorem 3.6, that given a polynomial p(z, e) in two complex variables 
satisfying p(zo, Co)= 0 and (@/Oz)(zo, Co)# 0, there is a neighborhood of 
(Zo, e0) within which the set of points (z, e) with p(z, e) = 0 forms the graph 
of a function z = r(e) analytic in a neighborhood of Co. We apply this in the 
c a s e s  7 2 # 1 t o  the quartic Q(z) regarded as a polynomial Q(z, e) in (z, e). 
We find for any Co, except where Q(z) has a repeated root as a polynomial 
in z, which is the set E, that there is a neighborhood U of eo and analytic 
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functions rj, j =  1 ..... 4, on U satisfying Q(rj(e), e ) = 0  for all eE U with 
rj(eo), j =  1, 2, 3, 4, being the four distinct roots of Q(z, Co)=0.  When  
~2= 1, 2 r 0, and hence Q(z) reduces to a quadratic,  there are of course 
only two such functions corresponding to the two distinct roots. Hence- 
forth we deal only with the case 7 2 r 1, the other being similar. 

Let S now denote some simply connected, path-connected open set in 
C \ E  and e o some point  in S and U be some ne ighborhood  of e o in S 
satisfying the above description. Let r l ,  r2, r3, r4 denote four such analytic 
functions on U as described. We may assume the set U is an open ball and 
as the r s are distinct at eo that  for e e U  and i C j  we in fact have 
r i (e)r  ) on U. Fur ther  note that the points e where Q(z,e) has 
repeated roots  are the elements of the set E and no root  equals _+ 1 unless 
it is repeated. We may  further assume that the r i are so numbered that  
r~(eo) r2(e0)= 1 = r3(eo)r4(e0) and hence that the other products  are not  
equal to 1. Hence by choosing a smaller ball if necessary we may assume 
for all e e U that  these other products  remain unequal  to 1 and hence for 
all e ~ U that  rl(e ) r2(e ) = 1 = r3(e) r4(e). 

Given such an open ball U, choose any open set V in S whose inter- 
section with U is connected. Let r be analytic on V with Q(r(e), e) = 0 for 
e e V and let rs, j = ! ..... 4, be analytic on U and satisfy the properties listed 
above. Then it follows that  for each e e Um V, r(e) = rj(e) for some j which 
a priori may depend on e. As U c~ V is connected, one sees that in fact j is 
constant  over U c~ V. This implies for the other possible values of j that  
r(e) ~ rj(e) for all e in the intersection. 

N o w  we apply a m onodrom y- t ype  argument.  Let eo be some arbitrary 
point  in S and U some open ball in S containing e0 as described above. 
Given any path F in S with F(0)  = Co, regard it as a complex-valued func- 
tion on [-0, 1]; we let r be analytic on U and suppose Q(r(e), e) = 0  on this 
ball. Let s e  [0, 1] be the supremum of those t such that (U, r) admits 
an analytic cont inuat ion along F[-0, t ]  with the analytic cont inuat ion 
satisfying: 

( , )  There is a finite sequence ss, j =  0,..., m, of points in [0, t] ,  with 
So = O, Sm = t, and open balls Dj ~ S, j = 0,..., m - 1, respectively, 
containing F([sj, ss+ 1]) and analytic functions wj defined on 
each Dj with wo(e)= r(e) for e e D o c~ U and wj(e)= wj+ l(e) for 
e e D j u D j + , k .  

(**) Q(wj{e), e)=O for e ~ D  r 

N o w  if s < 1, a straightforward argument  along the lines of  the pre- 
vious three paragraphs  shows that r may  be analytically continued to an 
open ball Dm+l centered on F(s) and such that both ( , )  and (**) hold for 
j =  0 ..... m + 1. So we have s = 1 and that  there is a ne ighborhood  of the 
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point F(1) to which (U, r) may be analytically continued with ( , )  and (**) 
holding. By the monodromy theorem (ref. 11, Theorem8.14)  there is a 
unique function q~, analytic on S, extending the function r from U to S. 
Notice that the map which sends e to Q(O(e), e) is analytic in S and zero 
where ~b equals r, which includes the open set U and hence is zero 
everywhere on S. 

If we choose the set U sufficiently small so that as above we have four 
functions ri analytic on U, distinct at every point of U, and satisfying 
rl(e) rz (e )=  1 = rB(e) r4(e) and Q(ri(e), e ) =  0 everywhere on U, we may, as 
in the preceding paragraph, construct for each i an analytic function ~bi on 
S extending r i. They will be distinct as ~bi extends r~ and all satisfy 
Q(Oi(e), e) = 0 everywhere on S. Also, as ~bl(e) ~b2(e) - 1 and ~b3(e) ~ba(e) - 1 
are analytic and zero on U, both are also true for all e ~ S. 

The functions ~b~ so constructed differ at every point of S. For  the set 
of points where any ~b~(e)- ~bj(e)= 0 is discrete in S or all of S. Suppose 
there is a point where they are not all different. About such a point we may 
find a ball U_c S and four functions r; on S, distinct and analytic at every 
point of U and satisfying Q(r;(e), e ) =  0 on U. As Uc~ S = U and is convex, 
a result above shows for each i in turn that there is a unique k such that 
(b~(e) = rk(e) for all e e U. Since the rk are everywhere different on U, so are 
the ~b~ unless they agree everywhere on U and hence everywhere on S, 
which is not true. Thus the values of the q~ are distinct at every point and 
from the last paragraph it must also follow that ~bi(e) ~bj(e) = 1 for any e e S 
iff {i,j} = {1, 2}  or {3, 4} .  

Since no root of Q(z, e) is ___1 unless eeE ,  it follows that ~bj(e)# +1 
on such S. It is also true that if S does not meet -1 (2 ,  7)w 1(2, ?;)w E, then 
Q(z, e) has no root of magnitude one and hence for each j either i~bj(e)l > 1 
holds for all e e S  or I~bj(e)l < 1 holds for all eeS .  It will follow in this 
circumstance that precisely one of ~bl, ~b2 has magnitude less than one and 
similarly for the pair ~b3, ~b4. 

By a similar argument we see that the functions so constructed are 
independent of the original point e0 and function elements, at least up to 
reindexing. 

We now return to extending the integrals Int(n, e) of (6.4). Let L o 
denote any one of the open intervals in -1 (2 ,  7 ) u  1(2, 7). Further, let L = 
{z t 9 t (z)~L0} and L+ = {z [ 91eL  0 , .3 (z )>0} .  The set E i s  a subset of the 
axes not meeting -1 (2 ,  7) u 1(2, 7) and the latter set does not contain 0. It 
follows that neither L nor L+ meets E. By the above arguments we may 
find four functions ~b i on L, analytic and distinct at every point of L, which 
further satisfy: 

(i) Q((~i(e), e ) = 0  for all i and eeL .  
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(ii) ~bi(e)2r for all eeL. 

(iii) ~bl(e) q~2(e) = 1 = ~b3(e ) q~4(e) for all e e L and qSi(e ) ~bj(e) r 1 in all 
other cases. 

(iv) [~bx(e)l, ]~b3(e)[ < 1 < [~bz(e)l, Iq~4(e)l for all eeL+. 

From this it follows easily that the function Ext(n, e) defined for e e L and 
n e Z  by 

8~ q~l(e) q~3(e) 
Ext(n, e) - 1 - 7 2 [~b,(e) - ~3(e)] [1 - q~l(e) q~3(e)] 

x 1 = ~ ) 2  l_-~3(e)2J 

equals Int(n, e) for e e L +  and is furthermore well defined and analytic 
everywhere on L. 

This completes the proof of Lemma 6.3 in the case 7 2 ~ 1. As indicated 
earlier, the method of proof of the result when 7 2= 1 and 2 r  is the 
same. | 

Finally we need to verify the hypotheses of Theorem 6.1. Let L now 
denote the set {z:9t(z)e-I(2,7)wI(2,~/)} and L+ now be the set 
{z: ,3(z)>0,  9t(z)e  -1(2,  7)w 1(2, 7)}. By Lemma 6.3 we now know that 

~ o  \ \ g l /  g2 

exists for eoe -1(2,  7)wI(2,  7), e > 0 ,  and functions (~) of finite support 
and that as a function of e, 

((;1) .,e,(;;)) 
admits an analytic extension from L+ to the set L. Combined with 
Lemma 6.2 and the representation of V in Eq. (6.2), we then find that 
DR(e) V admits an analytic extension from R+ to R, as a (finite-rank) 
operator-valued function. As [el --* o% R(e) converges to zero in norm and 
hence DR(e)V does also, which implies that (1 +DR(e)V) -1 exists for all 
e with norm sufficiently large. If Z(e) denotes the analytic extension of 
DR(e) V from L+ to L as a finite-rank operator, then we conclude that 
( l + Z ( e ) )  -1 exists for some e in each connected component of L. The 
analytic Fredholm theorem then implies that as a function of e, 
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(1 + DR(e)V) 1 and hence exists for all e e L  except for a discrete subset. 
It follows that except for a discrete set of points e0 s -1(2,  7) u 1(2, 7), 

l i m ( ( f ~ , ( l + D R ( e ) V ) - ' ( f 2 ) )  
~ o  \ \ g l , /  g2 

exists for e > 0. By Lemma 6.2 the existence of these limits above in the 
described circumstances shows that the conditions of Theorem 6.1 may be 
satisfied and thus the singular continuous spectrum is empty whenever 
7 2 r  or 2 :~0. 

As indicated at the start of this section, the continuous and hence 
singular continuous part of the spectrum of K +  is empty when y2 = 1 and 
2 = 0. Hence we have now proved Theorem 1.1. The same result also holds 
for self-adjoint local perturbations of K+.  Hence Proposition 5.7 now 
implies that Theorem 1.1 also holds for K+ + V. 

Finally we note the following corollary of our arguments. 

Corollary 6.4. The spectrum of K+(2, 7) contains an eigenvalue at 
0 iff V va 0 and [2[ < 1/2. Otherwise the spectrum contains no other eigen- 
values unless V ~ = l and 2 = 0, when there are two more eigenvatues at -t- 1. 
The singular continuous spectrum is always empty, as is the absolutely 
continuous spectrum when 72= 1 and 2 = 0 .  In the other cases the 
absolutely continuous spectrum consists of one or two closed intervals 
of ~. 
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